AMTCLAB: A MATLAB®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media
نویسندگان
چکیده
In this paper we present the program AMTCLAB, a MATLAB-based computer code that analyzes the traveltime distribution and performs quality analysis at the pre-inversion stage for elliptically anisotropic media explored via 2D transmission experiments. This software generalizes the program MTCLAB presented in the past for the case of layered isotropic media, and makes use of traditional and robust traveltime distribution descriptors (mean, standard deviation, median, lower and upper quartiles, inter-quartile range and minimum absolute deviation), which are valid for all kinds of recording geometries. A guided user interface leads the modeller through the algorithm steps using the same data MTCLAB-structures. This methodology offers better understanding of the data variability prior to inversion, and provides the geophysicist with a macroscopic elliptical anisotropic velocity model, which is valid at the experiment scale, and matches the experimental mean traveltime distribution. To solve the inverse problems involved, program AMTCLAB uses the particle swarm optimisation algorithm, which allows the use of different norms and sampling the region of equivalent anisotropic velocity models in order to perform posterior sample statistics in each individual model parameter. The approximated velocity model issued from this analysis can serve in the traveltime inverse problem as an initial guess, or as a reference model in the subsequent inversion. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Velocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method
In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...
متن کاملFinite-difference quasi-P traveltimes for anisotropic media
The first-arrival quasi-P wave traveltime field in an anisotropic elastic solid solves a first-order nonlinear partial differential equation, the q P eikonal equation. The difficulty in solving this eikonal equation by a finitedifference method is that for anisotropic media the ray (group) velocity direction is not the same as the direction of the traveltime gradient, so that the traveltime gra...
متن کاملPrestack Kirchhoff time migration for complex media
Constructing the seismic image in vertical time, as opposed to depth, eliminates the inherent ambiguity of resolving the vertical P -wave velocity from surface seismic data in transversely isotropic media with a vertical axis of symmetry (VTI media). By ray tracing in the space-time (x-τ)-domain, a traveltime map is built by interpolating the traveltime information along the rays onto a regular...
متن کاملInfluence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media
The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...
متن کاملRESIP2DMODE: A MATLAB-Based 2D Resistivity and Induced Polarization Forward Modeling Software
Forward modeling is an integral part of every geophysical modeling resulting in the numerical simulation of responses for a given physical property model. This Forward procedure is helpful in geophysics both as a means to interpret data in a research setting and as a means to enhance physical understanding in an educational setting. Calculation of resistivity and induced polarization forward re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 35 شماره
صفحات -
تاریخ انتشار 2009